摘要

The lattice Boltzmann method (LBM) has been widely used in the simulation of particulate flows involving complex moving boundaries. Due to the kinetic background of LBM, the bounce-back (BB) rule and the momentum exchange (ME) method can be easily applied to the solid boundary treatment and the evaluation of fluid solid interaction force, respectively. However, recently it has been found that both the BB and ME schemes may violate the principle of Galilean invariance (GI). Some modified BB and ME methods have been proposed to reduce the GI error. But these remedies have been recognized subsequently to be inconsistent with Newton's Third Law. Therefore, contrary to those corrections based on the BB and ME methods, a unified iterative approach is adopted to handle the solid boundary in the present study. Furthermore, a direct force (DF) scheme is proposed to evaluate the fluid-particle interaction force. The methods preserve the efficiency of the BB and ME schemes, and the performance on the accuracy and GI is verified and validated in the test cases of particulate flows with freely moving particles.