摘要

MUC1 is a transmembrane glycoprotein abnormally expressed in all stages of development of human adenocarcinomas. Overexpression and hypoglycosylation of MUC1 in cancer cells compared with normal epithelial cells are likely to alter its function and affect the behavior of cancer cells. The extracellular domain, specifically the highly O-glycosylated VNTR (variable number of tandem repeats) region, plays an important role in cell-cell communication; however, we show here that it also participates intracellularly in activation of the NF-kappa B pathway. Transfection of MUC1(-) tumor cells with cDNA encoding MUC1 with 22 tandem repeats (MUC1/22TR) or two tandem repeats (MUC1/2TR) or two isoforms that lack the VNTR region (MUC1/Z and MUC1/Y) showed that the highest expression levels of NF-kappa B family members correlated with the presence of VNTR and the highest number of tandem repeats. Because expression of MUC1 with VNTR on tumors was previously associated with chemotactic activity for cells of the innate immune system, we investigated the influence of MUC1 expression on the NF-kappa B-dependent transcriptional regulation of proinflammatory cytokines. ChIP and real-time PCR experiments revealed that MUC1/22TR up-regulated IL-6 and TNF-alpha expression by binding to their promoter regions in a NF-kappa B p65-dependent manner in both MUC1-transfected and human breast cancer cells that express endogenous MUC1. This newly detected complex of MUC1 and p65 is a novel mechanism that tumors can use to promote inflammation and cancer development.

  • 出版日期2011-12-9