A comparative study of numerical approaches to risk assessment of contaminant transport

作者:Zhang, Dongxiao*; Shi, Liangsheng; Chang, Haibin; Yang, Jinzhong
来源:Stochastic Environmental Research and Risk Assessment, 2010, 24(7): 971-984.
DOI:10.1007/s00477-010-0400-5

摘要

In risk analysis, a complete characterization of the concentration distribution is necessary to determine the probability of exceeding a threshold value. The most popular method for predicting concentration distribution is Monte Carlo simulation, which samples the cumulative distribution function with a large number of repeated operations. In this paper, we first review three most commonly used Monte Carlo (MC) techniques: the standard Monte Carlo, Latin Hypercube sampling, and Quasi Monte Carlo. The performance of these three MC approaches is investigated. We then apply stochastic collocation method (SCM) to risk assessment. Unlike the MC simulations, the SCM does not require a large number of simulations of flow and solute equations. In particular, the sparse grid collocation method and probabilistic collocation method are employed to represent the concentration in terms of polynomials and unknown coefficients. The sparse grid collocation method takes advantage of Lagrange interpolation polynomials while the probabilistic collocation method relies on polynomials chaos expansions. In both methods, the stochastic equations are reduced to a system of decoupled equations, which can be solved with existing solvers and whose results are used to obtain the expansion coefficients. Then the cumulative distribution function is obtained by sampling the approximate polynomials. Our synthetic examples show that among the MC methods, the Quasi Monte Carlo gives the smallest variance for the predicted threshold probability due to its superior convergence property and that the stochastic collocation method is an accurate and efficient alternative to MC simulations.