摘要

We present a novel analytical modeling of a zigzag single-walled semiconducting carbon nanotube field effect transistor (CNFET) by incorporating quasi-one-dimensional (Q1D) top-of-a-potential barrier approach. By implementing multimode carrier transport, we explore and compare the performance of a low- (360 cm(2)/Vs) and high-mobility (7200 cm(2)/Vs) CNFET model with experimental data from nanotube and 45 nm MOSFET, respectively, as well as existing compact models Mobility and carrier concentration models are also developed to obtain a good matching with physical data For a high mobility CNFET. we found that a maximum of 120 mu A is obtained In addition to this, a CNT-based inverter is also developed by constructing n-type and p-type CNFET in ORCAD's analog behavioral model (ABM) A gain of as high as 5.

  • 出版日期2010-9