摘要

Crustaceans of the subclass Copepoda are key components of essentially all aquatic ecosystems as they serve both as the primary consumers of phytoplankton and/or as major food sources for a wide variety of higher-level consumers. The dominant group of copepods in most freshwater ecosystems is the Cyclopoida; members of this order are routinely used as environmental indicators, and some predatory species are used for the biological control of disease-causing mosquitoes. Given their ecological and disease control importance, it is surprising that little is known about endocrine control in cyclopoids. Here, as part of an ongoing effort to identify and characterize the neurochemical signaling systems of members of the Copepoda, the extant transcriptome shotgun assembly for Eucyclops serrulatus, a member of the Cyclopoida, was mined for transcripts encoding putative peptide hormone-encoding transcripts. Via queries using known arthropod pre/preprohormone sequences, primarily ones from other copepod species, 36 E. serrulatus peptide-encoding transcripts were identified. The proteins deduced from these sequences allowed for the prediction of 160 unique mature neuropeptides, including the first copepod isoform of pigment dispersing hormone, as well as isoforms of adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, allatotropin, crustacean hyperglycemic hormone, diuretic hormone 31, DXXRLamide, FLRFamide, FXGGXamide, GSEFLamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuroparsin, neuropeptide F and tachykinin-related peptide. These peptides are currently the only ones known from any member of the Cyclopoida, and as such, provide a new resource for investigating peptidergic signaling in this important copepod order.

  • 出版日期2015-1-15