摘要

Acoustic scattering of spherical waves generated by a monopole point source in a perfect (inviscid and ideal) compressible fluid by a fluid-saturated porous cylinder of infinite length is studied theoretically in the present study. The formulation utilizes the Biot theory of dynamic poroelasticity along with the appropriate wave-field expansions, the translational addition theorem for spherical wave functions, and the pertinent boundary conditions to obtain a closed-form solution in the form of infinite series. The analytical results are illustrated with a numerical example in which a monopole point source within water is located near a porous cylinder with a water-saturated Ridgefield sandstone formation. The numerical results reveal the effects of source excitation frequency, the cylinder interface permeability condition, and the location of the point source and the field point on the backscattered pressure magnitudes. Limiting cases are considered, and the obtained numerical results are validated by already well-known solutions.

  • 出版日期2012-10