摘要

In order to understand the effects of the thermophysical properties of the melt on the transport phenomena in the Czochralski (Cz) furnace for the single crystal growth of silicon, a set of global analyses of momentum, heat and mass transfer in small Cz furnace (crucible diameter: 7.2 cm, crystal diameter: 3.5 cm, operated in a 10 Torr argon flow environment) was carried out using the finite-element method. The global analysis assumed a pseudosteady axisymmetric state with laminar flow. The results show that different thermophysical properties will bring different variations of the heater power, the deflection of the melt/crystal interface, the axial temperature gradient in the crystal on the center of the melt/crystal interface and the average oxygen concentration along the melt/crystal interface. The application of the axial magnetic field is insensitive to this effect. This analysis reveals the importance of the determination of the thermophysical property in numerical simulation.