摘要

The marine ecosystem of the Jiaozhou Bay has degraded significantly in fisheries productivity and its ecological roles as spawning and nursery ground for many species of commercial importance has been declining in recent years. A mass-balanced trophic model was developed using Ecopath with Ecosim to evaluate the trophic structure of the Jiaozhou Bay for improving ecosystem management. The model were parameterized based on the fisheries survey data in the Jiaozhou Bay in 2011, including 23 species groups and one detritus group according to their ecological roles. The trophic levels of these ecological groups ranged from 1 (primary producers and detritus) to 4.3 (large demersal fishes). The estimated total system throughput was 12 917.10 t/(km(2).a), with 74.59% and 25.41% contribution of the total energy flows from phytoplankton and detritus, respectively. Network analyses showed that the overall transfer efficiency of the ecosystem was 14.4%, and the mean transfer efficiency was 14.5% for grazing food chain and 13.9% for detritus food chain. The system omnivory index (SOI), Finn's cycled index (FCI) and connectance index (CI) were relatively low in this area while the total primary production/total respiration (TPP/TR) was high, indicating an immature and unstable status of the Jiaozhou Bay ecosystem. Mixed trophic impact analysis revealed that the cultured shellfish had substantial negative impacts on most functional groups. This study contributed to ecosystem-level evaluation and management planning of the Jiaozhou Bay ecosystem.