摘要

<jats:p>In this paper, from the aspect of kinematics, we reveal the physical significance of assistance for the assistive mechanism. Then, Manipulability Inclusive Principle (MIP) is proposed to evaluate assistive mechanism’s assistive feasibility and assistive effect through the manipulability comparison between the assisted limb and slave-active-assistive mechanism. The optimization based on MIP can make the assistive mechanism realize better kinematical performance and assistance. The design and optimization of the assistive mechanism should keep the assistive mechanism from interfering with human’s movements in the expected workspace. More importantly, it should also keep the assistive mechanism not only have better kinematical performance on symmetry, isotropy, etc. but also be able to provide better assistance for human. The application on the human lower-limb straight-walking power-assisting mechanism shows that the design and optimization based on MIP can find out the assistive mechanism which satisfies assistive feasibility and realizes better assistive effect in the whole expected workspace.</jats:p>

全文