摘要

Many common diseases show wide phenotypic variation. We present a statistical method for determining whether phenotypically defined subgroups of disease cases represent different genetic architectures, in which disease-associated variants have different effect sizes in two subgroups. Our method models the genome-wide distributions of genetic association statistics with mixture Gaussians. We apply a global test without requiring explicit identification of disease associated variants, thus maximizing power in comparison to standard variant-by-variant subgroup analysis. Where evidence for genetic subgrouping is found, we present methods for post hoc identification of the contributing genetic variants. We demonstrate the method on a range of simulated and test data sets, for which expected results are already known. We investigate subgroups of individuals with type 1 diabetes (T1D) defined by autoantibody positivity, establishing evidence for differential genetic architecture with positivity for thyroidperoxidase-specific antibody, driven generally by variants in known T1 D-associated genomic regions.

全文