摘要

This work proposes a sorption enhanced-thermally coupled reactor (SE-TCR) for simultaneous production of gasoline and hydrogen in which Zeolite 4A, with the composition of Na-12(Si12Al12O48)center dot 27H(2)O, is considered as water adsorbent. For this purpose, in the exothermic side of proposed configuration, a gas-flowing solids-fixed bed reactor (GFSFBR) is used. The main advantage of GFSFBR over the conventional sorption-enhanced reaction process is the continuous adsorbent regeneration in this novel configuration. SE-TCR takes the advantages of adsorption and couple technique simultaneously. The new configuration is designed as a double pipe reactor where exothermic Fischer-Tropsch synthesis (FTS) reactions in the exothermic side are coupled with dehydrogenation of cyclohexane. Simulation result demonstrates that selective adsorption of water from FTS in SE-TCR leads to 45% and 57% enhancement in gasoline and hydrogen yields and 84% reduction in CO2 production in comparison with the zero solid mass flux condition, respectively. This paper shows how the concept of in-situ water adsorption is feasible and beneficial for gasoline production in thermally coupled reactor.

  • 出版日期2013-9