Analytical modeling and vibration analysis of internally cracked rectangular plates

作者:Joshi P V; Jain N K*; Ramtekkar G D
来源:Journal of Sound and Vibration, 2014, 333(22): 5851-5864.
DOI:10.1016/j.jsv.2014.06.028

摘要

This study proposes an analytical model for nonlinear vibrations in a cracked rectangular isotropic plate containing a single and two perpendicular internal cracks located at the center of the plate. The two cracks are in the form of continuous line with each parallel to one of the edges of the plate. The equation of motion for isotropic cracked plate, based on classical plate theory is modified to accommodate the effect of internal cracks using the Line Spring Model. Berger's formulation for in-plane forces makes the model nonlinear. Galerkin's method used with three different boundary conditions transforms the equation into time dependent modal functions. The natural frequencies of the cracked plate are calculated for various crack lengths in case of a single crack and for various crack length ratio for the two cracks. The effect of the location of the part through crack(s) along the thickness of the plate on natural frequencies is studied considering appropriate crack compliance coefficients. It is thus deduced that the natural frequencies are maximally affected when the crack(s) are internal crack(s) symmetric about the mid-plane of the plate and are minimally affected when the crack(s) are surface crack(s), for all the three boundary conditions considered. It is also shown that crack parallel to the longer side of the plate affect the vibration characteristics more as compared to crack parallel to the shorter side. Further the application of method of multiple scales gives the nonlinear amplitudes for different aspect ratios of the cracked plate. The analytical results obtained for surface crack(s) are also assessed with FEM results. The FEM formulation is carried out in ANSYS.

  • 出版日期2014-10-27