Numerical simulation of transient flows in a rocket propulsion nozzle

作者:Lijo Vincent; Kim Heuy Dong*; Setoguchi Toshiaki; Matsuo Shigeru
来源:International Journal of Heat and Fluid Flow, 2010, 31(3): 409-417.
DOI:10.1016/j.ijheatfluidflow.2009.12.005

摘要

A numerical investigation of transient flows in an axisymmetric over-expanded thrust-optimized contour nozzle is presented. These nozzles experience side-loads during start-up and shut-down operations, because of the flow separation at nozzle walls. Two types of flow separations such as free shock separation (FSS) and restricted shock separation (RSS) shock structure occur. A two-dimensional axisymmetric numerical simulation has been carried for a thrust-optimized contour nozzle to validate present results and investigate oscillatory flow characteristics during the start-up processes. Reynolds-Averaged Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme. Governing equations are solved by coupled implicit scheme. The present work is concerned with comprehensive assessment of the flow features by using Reynolds stress turbulence model. Computed pressure at the nozzle wall closely matched with the experimental data. A hysteresis phenomenon has been observed between these two shock structures. The transition from FSS to RSS pattern during start-up process has shown maximum nozzle wall pressure. Nozzle wall pressure and shear stress values have shown fluctuations during the FSS to RSS transition. The oscillatory pressure has been observed on the nozzle wall for high pressure ratio. Present results have shown that magnitude of the nozzle wall pressure variation is high for the oscillatory phenomenon.

  • 出版日期2010-6