摘要

Two-phase Cryogenic Avalanche Detectors (CRADs) with combined THGEM/GAPD multiplier have become an emerging potential technique for dark matter search and coherent neutrino-nucleus scattering experiments. In such a multiplier the THGEM hole avalanches are optically recorded in the Near Infrared (NIR) using a matrix of Geiger-mode APDs (GAPDs). To select the proper sensor, the performances of six GAPD types manufactured by different companies, namely by Hamamatsu (MPPCs), CPTA (MRS APDs) and SensL (SiPMs), have been comparatively studied at cryogenic temperatures when operated in two-phase CRADs in Ar at 87 K. While the GAPDs with ceramic packages failed to operate properly at cryogenic temperatures, those with plastic packages, namely MPPC S10931-100P and MRS APD 149-35, showed satisfactory performances at 87 K. In addition, MPPC S10931-100P turned out to be superior in terms of the higher detection efficiency, lower noise rate, lower pixel quenching resistor and better characteristics reproducibility.

  • 出版日期2015-4