摘要

Metallic Fe-Ti alloy thin films were deposited by high-power impulse magnetron sputtering (HiPIMS) on a glass substrate with an FTO electrode. Two-component alloys were prepared by sputtering of a single target, which was composed from two sectors made from different elements: iron disc and titanium ring. Chemical composition of alloy thin films was controlled by the width of titanium ring that partially covered iron target. These alloy thin films were anodized in fluorine-containing electrolyte with the aim to create mixed oxide nanostructures. Anodized layers were amorphous and transparent. After calcination, the layers consisted of crystalline Fe2O3 although TiO2 was still amorphous. Photoelectrochemical characterization show that increasing amount of titanium in the alloy results in the fabrication of Fe2O3/TiO2 nanostructures with higher photocurrent compared to those prepared from pure iron by the same anodization technique.

  • 出版日期2018-9-1

全文