摘要

A relay attack is probably the most popular assault that is normally executed over RFID security protocols. To protect RFID systems against this attack, distance bounding protocols are commonly employed. Within such protocols, the reader estimates an upper bound for the physical distance between the tag and itself as well as authenticating the tag. In this paper, as a general case, the concept of a distance bounding protocol is introduced with five adjustable security parameters characterized by pd, k, n, t(1) and t(2). Since RFID systems and distance bounding protocols are principally vulnerable to noise, the security analysis for the introduced distance bounding protocol is performed over a noisy channel. With such analysis, the attacker's success probability due to mafia fraud and distance fraud attacks are obtained in a closed form through the five security parameters and the probability of erroneous transmission. The analytic results show that, with the proper selection of the mentioned security parameters in a known noisy environment, a distance bounding protocol provides the optimal attackers' success probabilities with the desirable number of iterations and memory requirements.

  • 出版日期2015-3