摘要

In this paper, asymmetrically positioned stub loaded open loop resonators with pseudo interdigital coupling are used to design compact multiband planar bandpass filters. The first design pertains to a dualband BPF that operates at 3.5 GHz and 5.7 GHz. The parameters like position of stub, which quantifies the asymmetry, and length of stub are further optimised using real coded genetic algorithm to evolve a triband BPF. The evolutionary design procedure is supported with an example of triband BPF having passband at 3.5 GHz, 5.5 GHz and 6.8 GHz, respectively. The transmission line models for both filters are developed as well as fabricated prototypes are realised and tested. There is a good agreement between the measured and simulated results. The measured insertion loss at first and second band centred around 3.5 GHz and 5.7 GHz of the dual band BPF are 1.5 dB and 1.25 dB, respectively. For the triband BPF the values are 1.24 dB, 1.6 dB and 1.8 dB at 3.5, 5.5 and 6.8 GHz, respectively. The dualband design covers the WiMAX and IEEE 802.11 a bands where as the triband design also covers the 6.8 GHz RFID frequency.

  • 出版日期2014

全文