摘要

This paper is devoted to the study on applying numerical techniques to accurately compute and robustly extend the libration point orbits (LPOs). A new methodology is proposed exploiting the hyperbolic dynamics of the collinear libration points. Numerical tools are developed to facilitate the efficient computation process, which are applicable to realistic force models and inherently parallelizable. Extensive numerical explorations in the Earth-Moon system are carried out, revealing the delicate structures of nested island chains and bounded chaotic motions on the center manifold. Numerical results confirm that the proposed approach can handle the computations of various types of LPOs in a unified manner and is operational over a wide range of energy levels. LPOs obtained with this approach offer a broad range of future mission possibilities in an extended vicinity of the collinear libration points.