摘要

Long-range charge and exciton transport in quantum dot (QD) solids is a crucial challenge in utilizing QDs for optoelectronic applications. Here, we present a direct visualization of exciton diffusion in highly ordered CdSe QDs superlattices by mapping exciton population using ultrafast transient absorption microscopy. A temporal resolution of similar to 200 fs and a spatial precision of similar to 50 nm of this technique provide a direct assessment of the upper limit for exciton transport in QD solids. An exciton diffusion length of similar to 125 nm has been visualized in the 3 ns experimental time window and an exciton diffusion coefficient of (2.5 +/- 0.2) x 10(-2) cm(2) s(-1) has been measured for superlattices constructed from 3.6 nm CdSe QDs with center-to-center distance of 6.7 nm. The measured exciton diffusion constant is in good agreement with FOrster resonance energy transfer theory. We have found that exciton diffusion is greatly enhanced in the superlattices over the disordered films with an order of magnitude higher diffusion coefficient, pointing toward the role of disorder in limiting transport. This study provides important understandings on energy transport mechanisms in both the spatial and temporal domains in QD solids.

  • 出版日期2016-7