摘要

The use of the finite element method (FEM) for the design of composed, thin-walled, structural steel members is considered. The bolted double-Z frame member is an interesting and economical engineering solution, already used in practice [1]. However, the European recommendations for the design of steel structures do not consider built-up members from cold-formed steel profiles. Finite element analysis is used to capture the various buckling effects that shape the response of slender thin-walled members. From the finite element model, the importance of initial imperfections and stiffness of connections is identified. The experimentally validated model predictions show that a non-linear finite element analysis can predict the member behaviour, in terms of failure mode and ultimate load, yield line pattern, overall stiffness and local strain in the cold-formed profiles. To obtain a good prediction, overall and localised initial imperfections should be considered and included in the analysis.

  • 出版日期2012-11