摘要

The particles conformation of the sericin protein extracted from silkworm Bombyx mori was studied under the conditions of different pH and salt concentrations by infrared spectroscopy (IR), dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements. The IR spectrum of sericin protein arises predominantly from C=O stretching vibration around the amide 1 region of 1 700-1 600 cm(-1). A strong trend of aggregation of the protein could be observed under specified experimental conditions. The apparent isoelectric point of the sericin protein was about 3. 7. The DES method was used to investigate the effects of pH and NaCl on the size distribution, where a large polydispersity of the system could be observed. Compared to pH 4 or high NaCl concentration, at pH 3, 8 or low NaCl concentration the sericin aggregation shows a relatively smaller size but larger polydispersity. TEM was used to investigate the microstructure of the aggregated sericin protein, where a loose and pine-like branched form could be observed at pH 3 or 8; however, a relatively compact structure was observed near pH 4 or at high salt concentration. At pH 4 the spherical monomer size can be calculated at around (60 +/- 6) nm (n=10) by TEM measurement. These phenomena could be explained by the effects of the electrostatic repulsion, hydrogen bonding and Van der Waals attractive force, which provide a basic theory for the application of sericin as biomaterial.