摘要

Ultra-thin CaF2 layers are grown on the Si(1 0 0) surface by using a Knudsen cell evaporator. These epitaxial structures are studied with a low temperature (9 K) scanning tunneling microscope and used to electronically decouple hexaphenyl molecules from the Si surface. We show that the ultra-thin CaF2 layers exhibit stripe structures oriented perpendicularly to the silicon dimer rows and have a surface gap of 3.8 eV. The ultra-thin semi-insulating layers are also shown to be functionalized, since 80 % of the hexaphenyl molecules adsorbed on these structures self-orients along the stripes. Numerical simulations using time-dependent density functional theory allow comparison of computed orbitals of the hexaphenyl molecule with experimental data. Finally, we show that the hexaphenyl molecules can be manipulated along or across the stripes, enabling the molecules to be arranged precisely on the insulating surface.

  • 出版日期2015-2-11