摘要

In many microfluidic devices, fluid flow is generated using micropumps like peristaltic micropumps. However the hydrodynamic performance of peristaltic micropumps has not been fully understood and furthermore the effect of dynamic interaction of pumping membrane and fluid flow has not been studied yet. To fill this gap, we studied the hydrodynamic performance of a peristaltic micropump using a numerical model incorporating the fluid-solid interactions. The model consisted of 3 layers; the top layer was the flow channel of 10 mu m high, the middle layer was the 5 similar to 30 mu m thick pumping membrane and the bottom layer was the 3 or 5 pumping chambers. By applying a pumping sequence at a frequency between 16 similar to 166 Hz, we calculated flow rate for at least 4 cycles and used the fourth or fifth cycle to evaluate the flow rate per a cycle. We found that the numerical model closely replicated the frequency vs. flow rate relationship of a peristaltic micropump as shown earlier in experimental models. We further found that the flow rate of a peristaltic micropump could be improved by increasing the number of pumping chambers or the thickness of pumping membrane.

  • 出版日期2011-4