摘要

Cadherins of synaptic complexes are considered to be critically involved in long-term potentiation (LTP). Here we compared biophysical properties of cadherin-11 and N-cadherin, which appear to exert opposing effects on LTP, i.e., inhibition and promotion, respectively. Characterization of cadherin-11 binding by atomic force microscopy and laser tweezers revealed a significantly higher Ca2+ affinity, with half-maximal binding (K-D) at 0.11-0.26 MM Ca2+, as compared to N-cadherin (K-D similar to 0.7 mM Ca2+). Adhesive properties of both cadherins were modulated to a similar degree by manipulation of the actin cytoskeleton indicating to unlikely account for opposing roles in LTP induction. However, differences in Ca2+ affinity could well explain opposing binding properties during activity-dependent transient reduction of extracellular Ca2+ ([Ca2+](e)) in the synaptic cleft: whereas high frequency stimulation with drop of.[Ca2+](e) to 0.3-0.8 MM Ca2+ will result in significant weakening of N-cadherin adhesion, cadherin-11-based adhesion will stay mostly stable. Reduction of N-cadherin adhesion may facilitate synaptic remodeling and LTP induction, while cadherin-11 adhesion with its higher stability at low [Ca2+](e) may counteract this process explaining why in cadherin-11-deficient mice LTP is increased rather than decreased.

  • 出版日期2008-3