摘要

A new type of transposon, named Anaconda (Anac) has been found in rice (Oryza sativa). In this paper, we demonstrate that Anaconda elements have diversified by acquisition of host cellular genes, amplification of the elements, and substitution and deletion of short segments. We identified four Anaconda elements in studies of rice alternative oxidase (AOX) genes, and subsequently isolated an additional 23 elements based on the identity of their terminal inverted repeats (TIRs). The Anaconda elements have long TIRs (114-458 bp). They also have direct repeats of 9 or 10 bp in their flanking regions that are thought to have been generated upon transposition. These structural features reveal that the Anaconda elements belong to the Mu superfamily. The most prominent feature of the Anaconda elements is the high frequency with which they have acquired host cellular genes. Of the 27 elements found here, 19 appear to have sequences presumably derived from rice genes, for example, the genes for AOX1c (four elements), cytochrome P450 (five elements), L-asparaginase (five elements), and PCF8 (two elements). Four elements, AnacAl-A4, have both the AOX1c and P450 genes. One element, AnacB14, involves a gene similar to mudrA of maize MuDR. Database analyses revealed that the loci of 26 of the 27 Anaconda elements in the subspecies japonica are the same as those in the subspecies indica. This suggests that these elements were incorporated before the divergence of these two subspecies.

  • 出版日期2005-12

全文