摘要

For long-term, sustained protein delivery, a new, star-shaped block copolymer composed of methoxy poly(ethylene glycol) (mPEG), branched oligoethylenimine (bOEI), and poly(L-histidine) (pHis) was synthesized via the multi-initiation and ring-opening polymerization (ROP) of His N-carboxy anhydride (NCA) on bOEI with a PEG conjugation. The resulting mPEG-bOEI-pHis (POH) had strong buffering capacity within the neutral-to-acidic pH range and was complexed with insulin (Ins) via an electrostatic attraction plus hydrophobic interactions, resulting in the formation of a dual-interaction complex (DIC, weight ratio 2) of approximately 30-60 nm in size. This DIC tolerated high salt concentrations without destabilization, supporting the existence of hydrophobic interactions, and protected Ins from the organic solvent/water interface. The DIC in poly(lactide-co-glycolide) microspheres (PLGA MS) as a long-term Ins delivery formulation was evenly distributed via a double-emulsion method. The DIC-loaded PLGA MS offered a higher Ins loading and a lower initial burst than Ins-loaded PLGA MS. This formulation possessed near zero-order release kinetics (for at least one month). In streptozotocin (STZ)-induced diabetic rats, a DIC-loaded PLGA MS formulation was able to maintain blood-glucose levels at 200 -350 mg/dL for the first two weeks and even lower levels (100-200 mg/dL) for the next two weeks. Thus, a new POH polymer and its complex with a drug protein could have potential biological application as a long-term, sustained protein delivery system.

  • 出版日期2012-12