摘要

The effect of a different stretching stress at different heat treatment temperatures (HTT) on the structure and the mechanical properties of polyacrylonitrile (PAN)- and rayon-based carbon fibers was studied. The tensile strength increases first and then decreases with increasing stretching stress, whereas the Young's modulus of the fibers continuously increases. The behavior of PAN- and rayon-based carbon fibers is similar with increasing stretching stress, but the tensile strength of PAN fiber decreased while that of rayon fiber increased with increasing HTT, what is more, the latter have a considerable lower tensile strength and modulus for equivalent processing conditions. The structure of the fibers was investigated with X-ray diffraction. A continuous change toward a nanostructure with a higher order was observed, which explains the increase in the Young's modulus. For more complex dependence of the tensile strength on the processing conditions, a quantitative model to describe the effect of stretching stress at different HTT on preferred orientation degree and shear modulus is proposed. From the critical stress fracture of carbon fiber analysis, we can understand the different changes of tensile strength of both type fibers with stretching stress at different HTT.