摘要

For a long time mitochondria have mainly been considered for their role in the aerobic energy production in eukaryotic cells, being the sites of the oxidative phosphorylation, which couples the electron transfer from respiratory substrates to oxygen with the ATP synthesis. Subsequently, it was showed that electron transfer along mitochondrial respiratory chain also leads to the formation of radicals and other reactive oxygen species, commonly indicated as ROS. The finding that such species are able to damage cellular components, suggested mitochondrial involvement in degenerative processes underlying several diseases and aging. More recently, a new role for mitochondria, as a system able to supply protection against cellular oxidative damage, is emerging. Experimental evidence indicates that the systems, evolved to protect mitochondria against endogenously produced ROS, can also scavenge ROS produced by other cellular sources. It is possible that this action, particularly relevant in physio-pathological conditions leading to increased cellular ROS production, is more effective in tissues provided with abundant mitochondrial population. Moreover, the mitochondrial dysfunction, resulting from ROS-induced inactivation of important mitochondrial components, can be attenuated by the cell purification from old ROS-overproducing mitochondria, which are characterized by high susceptibility to oxidative damage. Such an elimination is likely due to two sequential processes, named mitoptosis and mitophagy, which are usually believed to be induced by enhanced mitochondrial ROS generation. However, they could also be elicited by great amounts of ROS produced by other cellular sources and diffusing into mitochondria, leading to the elimination of the old dysfunctional mitochondrial subpopulation.

  • 出版日期2013-3