摘要

This paper reports novel imidazole fluorescent poly(ionic liquid) nanoparticles (FPILNs) of poly(1-[(4-methyphenyl)methyl]-3-vinyl-imidazolium bromide (poly([MVI]Br) for selective and sensitive determination of pyrogallol. An imidazole ionic liquid of 1-[(4-methyphenyl)methyl]-3-vinyl-imidazolium bromide ([MVI]Br) was synthesized and used as the only monomer to obtain poly([MVI]Br) possessing phenyl fluorophores using a radical polymerization technique. The obtained poly([MVI]Br) can form nanoparticles in water. Scanning electron microscopy and dynamic light scattering results revealed majority of poly([MVI]Br) FPILNs with diameters ranging from 40 to 400 nm. Although [MVI]Br showed weak fluorescence intensity, poly([MVI]Br) FPILNs exhibited strong fluorescence intensity with a quantum yield of 0.192, which is attributed' to the presence of significant number of phenyl fluorophores and rigid construction. The selective and sensitive determination of pyrogallol was achieved through fluorescence quenching of poly([MVI]Br) FPILNs, and the quenching was attributed to the oxidation of poly([MVI]Br) FPILNs by O-2(center dot-). produced by pyrogallol autoxidation. The poly([MVI]Br) FPILNs-based sensor demonstrated a good linear relationship between the extent of fluorescence quenching and the concentration of pyrogallol in a range of 0.05 - 10.0 mu M, achieving a detection limit of 0.01 mu M. Furthermore, the poly([MVI]Br) FPILNs-based assay detected pyrogallol in environmental water samples, suggesting its potential to be applied for practical purposes.