摘要

In this paper, we propose an efficient operator splitting method for local region Chan-Vese (C-V) model for image segmentation. Different from the C-V model, we employ the window function and absorb the local characteristics of the image for improving the C-V model, which we called the local C-V model. The local C-V model can deal with the problem of intensity inhomogeneity which widely exists in the real-world images. By employing a Laplacian operator, we present an operator splitting method to update the level set function. Firstly, we solve the proposed model for evolving the level set function, which drives the active contour to move toward the object boundaries. Secondly, we introduce the Laplacian operator to act on the level set function as a diffusion term, which could efficiently ensure the smoothness and stability and eliminate the complex process of re-initialization. Besides, we increase a new constraint term which avoids updating the level set function seriously. Furthermore, we present an extension for vector-valued images. Experiment results show that our method is competitive with application to synthetic and real-world images.