摘要

Studies of one-dimensional nanostructures of various types (such as quantum wires, nanorods, nanotubes and nanobelts) have progressed substantially during the past decade and have been reviewed by a number of authors. Here, we provide a concise overview of the synthesis and special properties of arrays of parallel nanorods, whose behavior is often quite distinct from that of individual nanorods of the same material. We show that the distinctive behavior of such nanorod arrays may occur due to their exhibiting either additive or emergent properties. The former originates from a simple amplification of some advantageous property shown by a single nanorod, thus making it usable in a practical device; while the latter necessarily involves the presence of the array, and would not be observable from a single nanorod. Nanorod arrays have been shown to have possible applications in diverse areas that include nanolasers, microcavities, surface enhanced Raman effect, photovoltaic cells, field emission sources, gas sensing, electrical discharge and in hydrophobic surfaces. We first present an overview of some of the physical and chemical synthesis strategies for nanorod arrays, followed by a brief review of their applications in the areas just mentioned.

  • 出版日期2009-6