摘要

BO2-substituted B3N3C54 heterofullerene was studied using density functional theory, and its electronic, magnetic and nonlinear optical properties are discussed. The substitution was considered at the B and N sites of the heterofullerene, in lower and higher spin states. We notice that BO2 substitution at the B sites of B3N3C54 heterofullerene leads to interesting properties, such as a smaller energy gap (0.66 eV) and a high spin magnetic moment (3 mu(B)). The density-of-states curves, molecular orbitals and spin density surfaces have been used to explain these facts. In addition, the first-order mean hyperpolarizability of B3N3C54 heterofullerene has been found to be significantly large (3.6. x. 10(3) a.u.), which is due to smaller transition energy in the crucial excited state. This is reflected by the absorption spectra calculated using the time-dependent density functional theory method. These findings may be exploited to design novel materials for possible spintronic and electro-optical applications.

  • 出版日期2016-4