摘要

This work describes the utilization of tumor-specific magnetic nanoparticles together with an alternating magnetic field as a means to thermally mark a tumor so as to detect it using a thermal imaging system. Experiments were conducted using an in vitro tissue model, an inductive heating system, and an infrared camera. The thermal images, recorded by the infrared camera during the experiments, were analyzed using an algorithm that was developed as part of this work. The results show that small tumor phantoms (diameter of 0.5 mm) that were embedded under the surface of the tissue phantom (up to 14 mm below the surface) can be detected and located, indicating that the proposed method could potentially offer considerable advantages over conventional thermography and other methods for cancer early detection. Nevertheless, several issues should be clarified in future studies before the method can be offered for clinical use. From the Clinical Editor: Tumor-specific magnetic nanoparticles exposed to an alternating magnetic field provide a method to thermally mark a tumor for detection using thermal imaging systems. In-vitro tissue model experiments demonstrated that tumor phantoms of 0.5mm up to 14mm below the surface can be detected and located, indicating that the proposed method could offer considerable advantages over conventional thermography.

  • 出版日期2010-12