摘要

The development of greenhouse gas mitigation strategies has become an important issue globally. Enteric methane (CH4) emissions from livestock do not only contribute substantially to the environmental footprint of livestock production but it also represents a loss of energy that could be channelled towards animal growth and production. In this study 14 sub-tropical grass species typical of transitional rangeland regions of South Africa were characterised in terms of ecological status, chemical composition, in vitro total gas and CH4 production. The aim of the study was 2-fold: to identify grass species that could be selected for low enteric CH4 production; evaluate the influence of rangeland ecological status on the methanogenic potential of a rangeland. Grass samples were collected by hand, air-dried, milled and analysed for nutrient composition, in vitro organic matter digestibility (IVOMD) and in vitro gas and CH4 production. Cenchrus ciliaris and Urelytrum agropyriodes produced the highest 48-h in vitro CH4 of 17.49 and 14.05 mL/g DM digested respectively. The lowest 48-h in vitro CH4 was produced by Andropogan gayanus and Bothriochloa bladhii with 5.98 and 6.08 mL/g DM digested respectively. The evaluated grass species were overall of poor quality with low CP concentrations ranging from 2.4% for Trachypogon spicatus to 6.7% for Digitaria eriantha andIVOMDranging from 22.5% for Andropogon gayanus to 42.2% for Urelytrum agropyriodes. Decreaser grass species presented with higher in vitro CH4 production compared with Increaser I and Increaser II grass species in the present study. The results of the study emphasise the importance of including the nutritional potential of grass species for improved livestock production when evaluating grass species for possible greenhouse gas mitigation strategies.

  • 出版日期2018