摘要

Source water reservoirs easily become thermally and dynamically stratified. Internal pollution released from reservoir sediments is the main cause of water quality problems. To mitigate the internal pollution more effectively, a new method, which combined chemical stabilization with water lifting aerator (WLA) technology, was proposed and its efficiency in inhibiting pollutant release was studied by controlled sediment-water interface experiments. The results showed that this new method can inhibit pollutant release from sediment effectively. The values of mean efficiency (E) in different reactors 2#-5# (1# with no agent, 2# 10 mg/L polymeric aluminum chloride (PAC) was added, 3# 20 mg/L PAC was added, 4# 30 mg/L PAC was added, 5# 20 mg/L PAC and 0.2 mg/L palyacrylamide (PAM) were added) for PO43- were 35.0%, 43.9%, 50.4% and 63.6%, respectively. This showed that the higher the PAC concentration was, the better the inhibiting efficiency was, and PAM addition strengthened the inhibiting efficiency significantly. For Fe2+, the corresponding values of E for the reactors 2#-5# were 22.9%, 47.2%, 34.3% and 46.2%, respectively. The inhibiting effect of PAC and PAM on Mn release remained positive for a relatively short time, about 10 days, and was not so effective as for PO43- and Fe2+. The average efficiencies in inhibiting the release of UV254 were 35.3%, 25.9%, 35.5%, 38.9% and 39.5% for reactors 2#-5#, respectively. The inhibiting mechanisms of the agents for different pollutants varied among the conditions and should be studied further.

全文