摘要

In providing acceptable navigational solutions, Location-Based Services (LBS) in land navigation rely mostly on integration of Global Positioning System (GPS) and Inertial Navigation System (INS) measurements for accuracy and robustness. The GPS/INS integrated system can provide better land-navigation solutions than the ones any standalone system can provide. Low-cost Inertial Measurement Units (IMUs), based on Microelectromechanical Systems (MEMS) technology, revolutionized the land-navigation system by virtue of their low-cost miniaturization and widespread availability. However, their accuracy is strongly affected by their inherent systematic and stochastic errors, which depend mainly on environmental conditions. The environmental noise and nonlinearities prevent obtaining optimal localization estimates in Land Vehicular Navigation (LVN) while using traditional Kalman Filters (KF). The main goal of this paper is to effectively eliminate stochastic errors of MEMS-based IMUs. The proposed solution is divided into two main components: (1) improving noise cancellation, using advanced stochastic error models in MEMS-based IMUs based on combined Autoregressive Processes (ARP) and first-order Gauss-Markov Process (1GMP), and (2) modeling the low-cost GPS/INS integration, using a hybrid Fuzzy Inference System (FIS) and Second-Order Extended Kalman Filter (SOEKF). The results obtained show that the proposed methods perform better than the traditional techniques do in different stochastic and dynamic situations.