摘要

Observational information has a strong geographic dependence that may directly influence the quality of parameter estimation in a coupled climate system. Using an intermediate atmosphere-ocean-land coupled model, the impact of geographic dependent observing system on parameter estimation is explored within a "twin" experiment framework. The "observations" produced by a "truth" model are assimilated into an assimilation model in which the most sensitive model parameter has a different geographic structure from the "truth", for retrieving the "truth" geographic structure of the parameter. To examine the influence of data-sparse areas on parameter estimation, the twin experiment is also performed with an observing system in which the observations in some area are removed. Results show that traditional single-valued parameter estimation (SPE) attains a global mean of the "truth", while geographic dependent parameter optimization (GPO) can retrieve the "truth" structure of the parameter and therefore significantly improves estimated states and model predictability. This is especially true when an observing system with data-void areas is applied, where the error of state estimate is reduced by 31 % and the corresponding forecast skill is doubled by GPO compared with SPE.