Analysis of fuel rod behavior under normal operating conditions in Super Fast Reactor

作者:Ju Haitao; Ishiwatari Yuki*; Oka Yoshiaki; Ikejiri Satoshi
来源:Nuclear Engineering and Design, 2010, 240(6): 1450-1457.
DOI:10.1016/j.nucengdes.2010.03.015

摘要

A Super Fast Reactor is a pressure-vessel type, fast spectrum supercritical water-cooled reactor (SCWR) that is presently researched in a Japanese project. A preliminary core has been designed with 1.59E+06 W/m(3) of power density [1]. In order to ensure the fuel rod integrity, the fuel rod behaviors under the normal operating conditions are analyzed using FEMAXI-6 code. Three types of the limiting fuel rods, with the maximum cladding surface temperature (MCST), maximum power peak (MPP) and maximum discharge burnup (MOB), are chosen to cover all the fuel rods in the core. The power histories of these fuel rods are taken from the neutronics calculation results in the core design. The available design range of the fuel rod design parameters, such as the initial gas plenum pressure, gas plenum length, grain size and pellet-cladding gap size, are found out in order to satisfy the following design criteria: (1) Maximum fuel centerline temperature should be less than 1900 degrees C. (2) Maximum cladding stress in circumstance direction should be less than 100 MPa. (3) Pressure difference on the cladding should be less than 1/3 of buckling collapse pressure. (4) Compressive stress to yield strength ratio should be less than 0.2. (5) Cumulative damage fraction (CDF) on the cladding should be less than 1.0. Finally the improved fuel rod design is proposed.

  • 出版日期2010-6

全文