摘要

Purpose: The purpose of this study was to evaluate the differential diagnostic value of 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (F-18-FDG) positron emission tomography (PET)/computed tomography (CT) for benign and malignant vertebral compression fractures (VCFs), where the diagnostic accuracy of F-18-FDG PET/CT was compared with magnetic resonance imaging (MRI). Patients and methods: Between 2015 and 2017, we retrospectively evaluated 87 patients with 116 VCFs. MRI was performed in all the 87 patients, whereas F-18-FDG PET/CT was executed in 51 patients. Three malignant features (convex posterior cortex, epidural mass formation, and pedicle enhancement) from MRI and the maximum standardized uptake value (SUVmax) from F-18-FDG PET/CT were evaluated in benign and malignant VCFs, respectively. Sensitivity, specificity, positive predictive value, and negative predictive value of MRI and F-18-FDG PET/CT were compared in the differentiation of malignant from benign VCFs. Results: The results of our investigation showed that the sensitivity and specificity for predicting malignant VCFs were 75.6% and 77.3% for convex posterior cortex, 82.9% and 813% for epidural mass formation, and 85.7% and 70.8% for pedicle enhancement. F-18-FDG PET/CT demonstrated higher sensitivity (100%) but lower specificity (38.9%) as compared to MRI with regard to differentiation between benign and malignant VCFs. A significant difference in the SUVmax values was observed between the benign and malignant fractures (2.9 +/- 1.0 vs 5.0 +/- 1.8, P < 0.01). Besides the value of SUmax, it has been noticed that the FDG uptake pattern differed in malignant and benign fractures. Conclusion: Significant MRI findings such as convex posterior cortex, epidural mass formation, and pedicle enhancement are highly suggestive of malignancy. F-18-FDG PET/CT reliably differentiated the fractures of malignant from benign based on both SUVmax and F-18-FDG uptake pattern. In a situation where MRI findings are not diagnostic, F-18-FDG PET/CT provides additional information as it has high sensitivity and is semiquantitative.