摘要

The asymmetric simple exclusion process (ASEP) is a paradigmatic model for nonequilibrium systems and has been used in many applications. Airplane boarding provides another interesting example where this framework can be applied. We propose a simple model for boarding process, in which a particle moves along a one-dimensional aisle after being injected, and finally is removed at a reserved site. Different from the typical ASEP model, particles are removed in a disorderly or a parallel way. Detailed calculations and discussions of some related characteristics, such as mean boarding time and parallelism indicator, are provided based on Monte-Carlo simulations. Results show that three phases exist in the boarding process: free-flow, jamming and maximum current. Transitions between these phases are governed by the difference between the injection and removal rate. Further analysis shows how the scaling behavior depends on the system size and the boarding conditions. Those results emphasize the importance of utilizing the whole length of the aisle to reduce the boarding time when designing an efficient boarding strategy.