Anisotropic inflation reexamined: upper bound on broken rotational invariance during inflation

作者:Naruko Atsushi*; Komatsu Eiichiro; Yamaguchi Masahide
来源:Journal of Cosmology and Astroparticle Physics, 2015, 2015(4): 045.
DOI:10.1088/1475-7516/2015/04/045

摘要

The presence of a light vector field coupled to a scalar field during inflation makes a distimt prediction: the observed correlation functions of the cosmic microwave background (CMB) become statistically anisotropic. We study the implications of the current bound on statistical anisotropy derived from the Planck 2013 CMB temperature data for such a model. The previous calculations based on the attractor solution indicate that the magnitude of anisotropy in the power spectrum is proportional to N-2, where N is the number of c-folds of inflation counted from the end of inflation. In this paper, we show that the attractor solution is not necessarily compatible with the current bound, and derive new predictions using another branch of anisotropic inflation. In addition, we improve upon the calculation of the mode function of perturbations by including the leading-order slow-roll corrections. We find that the anisotropy is roughly proportional to [2(epsilon(H) + 4 eta(H))/3 / 4(c - 1)(-2), where epsilon(H) and eta(H) are the usual slow-roll parameters and c is the parameter in the model, regardless of the form of potential of an inflaton field. The bound from Planck implies that breaking of rotational invariance during inflation (characterized by the background homogeneous shear divided by the Hubble rate) is limited to be less than O(10(-9)). This bound is many orders of magnitude smaller than the amplitude of breaking of time translation invariance, which is observed to be O(10(-2)).

  • 出版日期2015-4