摘要

In this article, a new model is developed to determine the solvent convective dispersion coefficient in a solvent vapor extraction (VAPEX) heavy oil recovery process. It is assumed that solvent mass transfer by convective dispersion takes place along the transition zone between the solvent chamber and untouched heavy oil, whereas solvent mass transfer by molecular diffusion occurs in the direction normal to the transition zone. It is also assumed that the solvent-diluted heavy oil gravity drainage through the transition zone has a linear or quadratic velocity profile in order to obtain analytical solutions of the solvent convective dispersion coefficients for the solvent chamber spreading and falling phases. As a result, this analytical model correlates the solvent convective dispersion coefficient to the maximum apparent oil gravity drainage velocity at the interface between the solvent chamber and transition zone, solvent molecular diffusion coefficient, transition-zone thickness, and porosity of the porous medium. To determine the solvent convective dispersion coefficient, the maximum apparent oil gravity drainage velocity is calculated by using Darcy%26apos;s law and the transition-zone thickness is obtained either from a previous study or by using a time similarity between the solvent molecular diffusion and oil gravity drainage. It is found that such a determined solvent convective dispersion coefficient is two to five orders larger than the solvent molecular diffusion coefficient, depending on the detailed experimental conditions of a specific VAPEX test.

  • 出版日期2012-3