摘要

In recent years, plenty of simulation research about the low impact development(LID) control effect has emerged, but studies on scheme comparison and evaluation are lacking. In this study, a comprehensive benefit evaluation system for LID, including environmental, economic, and social benefits, was established on the basis of Analytic Hierarchy Process(AHP) and urban storm water model. Above all, benefit identification, quantitative evaluation and scheme comparison of single LID measures were obtained according to site investigation, simulated calculation and theoretical analysis. Whereafter, LID combination plans were designed based on single LID measures with high comprehensive benefit values, and their comprehensive benefits were evaluated to obtain the optimal plan. Then, based on well-founded system combined with Storm Water Management Model (SWMM), the design and optimization of LID were conducted, with a case in Xi'an, China. It turned out that the preferential order of the LID single measures according to the comprehensive benefit was: bio-retention > rain barrels > low-elevation greenbelt > green roofs > permeable pavement. Five LID combination plans were designed based on bio-retention, rain barrels, low-elevation greenbelt, and green roofs. Evaluation results showed that plan I (bio-retention and green roofs) was the optimal LID combination plan.