Mutational alteration of human immunodeficiency virus type 1 Vif allows for functional interaction with nonhuman primate APOBEC3G

作者:Schrofelbauer Barbel; Senger Tilo; Manning Gerard; Landau Nathaniel R*
来源:Journal of Virology, 2006, 80(12): 5984-5991.
DOI:10.1128/JVI.00388-06

摘要

Human APOBEC3F (hA3F) and APOBEC3G (hA3G) are antiretroviral cytidine deaminases that can be encapsidated during virus assembly to catalyze C -> U deamination of the viral reverse transcripts in the next round of infection. Lentiviruses such as human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) have evolved the accessory protein Vif to induce their degradation before packaging. HIV type 1 (HIV-1) Vif counteracts hA3G but not rhesus macaque APOBEC3G (rhA3G) or African green monkey (AGM) APOBEC3G (agmA3G) because of a failure to bind the nonhuman primate proteins. The species specificity of the interaction is controlled by amino acid 128, which is aspartate in hA3G and lysine in rhA3G. With the objective of overcoming this species restriction, mutations were introduced into HIV-1 Vif at amino acid positions that differed in charge between HIV-1 Vif and SIV Vif. The mutant proteins were tested for the ability to counteract hA3G, rhA3G, and agmA3G. Alteration of the conserved sequence at positions 14 to 17 from DRMR to SERQ, which is the sequence in AGM Vif, caused HIV-1 Vif to functionally interact with rhA3G and agmA3G. Mutation of three residues to the sequence SEMQ allowed interaction with rhA3G. SEMQ Vif also counteracted D128K mutant hA3G and wild-type hA3G. Introduction of the sequence into an infectious molecular HIV-1 clone allowed the virus to replicate productively in human cells that expressed rhA3G or hA3G. These findings provide insight into the interaction of Vif with A3G and are a step toward the development of a novel primate model for AIDS.

  • 出版日期2006-6
  • 单位上海生物信息技术研究中心

全文