摘要

Accumulating evidence suggests that the tumor suppressor gene Kruppel-like factor 6 (KLF6) and its dominant-negative splice form KLF6-SV1 play important roles in both the development and progression of cancer. However, the role of KLF6-SV1 in gastric cancer remains largely unknown. KLF6-SV1 expression was detected in various human gastric cancer cell lines and gastric cancer patient samples by reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting. Small interfering RNA (siRNA) was used to inhibit KLF6-SV1 expression in BGC-823 and SGC-7901 cell lines. The effects of downregulation of KLF6-SV1 by siRNA on cell proliferation, migration, invasion, and tumor growth were examined in vitro and in vivo. Overexpression of KLF6-SV1 was detected in tumor samples from gastric cancer patients, and in various differentiated gastric cancer cell lines. In vitro downregulation of KLF6-SV1 by siRNA inhibited BGC-823 and SGC-7901 cell proliferation, anchorage-independent growth, migration, and invasion through the altered expression of Ki-67, vascular endothelial growth factor (VEGF), E-cadherin, and matrix metalloproteinase (MMP)-9. Also, KLF6-SV1 silencing promoted caspase-dependent apoptosis of BGC-823 and SGC-7901 cells via the regulation of phosphatidylinositol 3-OH kinase (PI3K)/Akt activity and Bcl-2-related protein expression. In vivo animal studies showed that KLF6-SV1 siRNA significantly inhibited the tumorigenicity of BGC-823 and SGC-7901 cells. Gene therapy with polyethylenimine/si-SV1 intratumoral injection also resulted in the suppression of tumor growth and prolonged animal survival in an established xenograft tumor model. These data demonstrate that KLF6-SV1 is an important regulator of the growth, migration, invasion, and survival of gastric cancer cells, and downregulation of KLF6-SV1 by siRNA may offer a new potential gene therapy approach for gastric cancer.