摘要

Predictive modeling of hydrological time series is essential for groundwater resource development and management. Here, we examined the comparative merits and demerits of three modern soft computing techniques, namely, artificial neural networks (ANN) optimized by scaled conjugate gradient (SCG) (ANN.SCG), Bayesian neural networks (BNN) optimized by SCG (BNN.SCG) with evidence approximation and adaptive neuro-fuzzy inference system (ANFIS) in the predictive modeling of groundwater level fluctuations. As a first step of our analysis, a sensitivity analysis was carried out using automatic relevance determination scheme to examine the relative influence of each of the hydro-meteorological attributes on groundwater level fluctuations. Secondly, the result of stability analysis was studied by perturbing the underlying data sets with different levels of correlated red noise. Finally, guided by the ensuing theoretical experiments, the above techniques were applied to model the groundwater level fluctuation time series of six wells from a hard rock area of Dindigul in Southern India. We used four standard quantitative statistical measures to compare the robustness of the different models. These measures are (1) root mean square error, (2) reduction of error, (3) index of agreement (IA), and (4) Pearson's correlation coefficient (R). Based on the above analyses, it is found that the ANFIS model performed better in modeling noise-free data than the BNN.SCG and ANN.SCG models. However, modeling of hydrological time series correlated with significant amount of red noise, the BNN.SCG models performed better than both the ANFIS and ANN.SCG models. Hence, appropriate care should be taken for selecting suitable methodology for modeling the complex and noisy hydrological time series. These results may be used to constrain the model of groundwater level fluctuations, which would in turn, facilitate the development and implementation of more effective sustainable groundwater management and planning strategies in semi-arid hard rock area of Dindigul, Southern India and alike.

  • 出版日期2014-4