摘要

In this paper, we report on the heterogeneous integration of monocrystalline silicon membranes for the fabrication of large segmented micromirror arrays for adaptive optics applications. The design relies on a one-level architecture with mirrors and suspension formed within the same material, employing a large actuator gap height of up to 5.1 mu m to allow for a piston-type mirror deflection of up to 1600 nm. Choosing monocrystalline silicon as actuator and mirror material, we demonstrate a completely drift-free operation capability. Furthermore, we investigate stress effects that degrade the mirror topography, and we show that the stress originates from the donor silicon-on-insulator wafer. The novel heterogeneous integration strategy used in this work is capable of reducing this stress to a large extent. [2011-0303]

  • 出版日期2012-8