A Maize Gene Regulatory Network for Phenolic Metabolism

作者:Yang Fan; Li Wei; Jiang Nan; Yu Haidong; Morohashi Kengo; Ouma Wilberforce Zachary; Morales Mantilla Daniel E; Gomez Cano Fabio Andres; Mukundi Eric; Prada Salcedo Luis Daniel; Velazquez Roberto Alers; Valentin Jasmin; Mejia Guerra Maria Katherine; Gray John; Doseff Andrea I; Grotewold Erich
来源:Molecular Plant, 2017, 10(3): 498-515.
DOI:10.1016/j.molp.2016.10.020

摘要

The translation of the genotype into phenotype, represented for example by the expression of genes encoding enzymes required for the biosynthesis of phytochemicals that are important for interaction of plants with the environment, is largely carried out by transcription factors (TFs) that recognize specific cis-regulatory elements in the genes that they control. TFs and their target genes are organized in gene regulatory networks (GRNs), and thus uncovering GRN architecture presents an important biological challenge necessary to explain gene regulation. Linking TFs to the genes they control, central to understanding GRNs, can be carried out using gene-or TF-centered approaches. In this study, we employed a gene-centered approach utilizing the yeast one-hybrid assay to generate a network of protein-DNA interactions that participate in the transcriptional control of genes involved in the biosynthesis of maize phenolic compounds including general phenylpropanoids, lignins, and flavonoids. We identified 1100 protein-DNA interactions involving 54 phenolic gene promoters and 568 TFs. A set of 11 TFs recognized 10 or more promoters, suggesting a role in coordinating pathway gene expression. The integration of the gene-centered network with information derived from TF-centered approaches provides a foundation for a phenolics GRN characterized by interlaced feed-forward loops that link developmental regulators with biosynthetic genes.

  • 出版日期2017-3-6