Phosphoproteomic comparison of Pik3ca and Pten signalling identifies the nucleotidase NT5C as a novel AKT substrate

作者:Moniz Larissa S; Surinova Silvia; Ghazaly Essam; Velasco Lorena Gonzalez; Haider Syed; Rodriguez Prados Juan Carlos; Berenjeno Inma M; Chelala Claude; Vanhaesebroeck Bart
来源:Scientific Reports, 2017, 7(1): 39985.
DOI:10.1038/srep39985

摘要

To identify novel effectors and processes regulated by PI3K pathway activation, we performed an unbiased phosphoproteomic screen comparing two common events of PI3K deregulation in cancer: oncogenic Pik3ca mutation (Pik3ca(H1047R)) and deletion of Pten. Using mouse embryonic fibroblast (MEF) models that generate inducible, low-level pathway activation as observed in cancer, we quantified 7566 unique phosphopeptides from 3279 proteins. A number of proteins were found to be differentially-regulated by Pik3ca(H1047R) and Pten loss, suggesting unique roles for these two events in processes such as vesicular trafficking, DNA damage repair and RNA splicing. We also identified novel PI3K effectors that were commonly-regulated, including putative AKT substrates. Validation of one of these hits, confirmed NT5C (5',3'-Nucleotidase, Cytosolic) as a novel AKT substrate, with an unexpected role in actin cytoskeleton regulation via an interaction with the ARP2/3 complex. This study has produced a comprehensive data resource and identified a new link between PI3K pathway activation and actin regulation.

  • 出版日期2017-1-6