摘要

A numerical analysis based on previous experiment has been carried out on T-shaped concrete-filled steel tubular columns subjected to constant axial compressive load and cyclic lateral loads. Tensile bar stiffeners were introduced to be welded on inside surfaces of steel tube to postpone its local buckling and to enhance the confinement of steel tube for concrete. A modified fiber-based method was developed to establish numerical modeling program of specimens' cyclic behavior, incorporating the effect of stiffeners on post-poning steel tube's local buckling and the confinement for concrete. The reciprocating movement of inflection point along frame column is also considered in the numerical program. A simplified arc-length method was employed as iterative control algorithm of the numerical model. Horizontal load-displacement hysteretic curves of specimens were calculated with the numerical model and verified with test results. A restoring force model based on experimental investigation was proposed as simplified method for engineering practice.